skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mann, Nelia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Top-down holographic QCD models often work in the “probe” (or “quenched”) limit, which assumes that the number of colors is much greater than the number of flavors. Relaxing this limit is essential to a fuller understanding of holography and more accurate phenomenological predictions. In this work, we focus on a mixing of glueball and meson mass eigenstates that arises from the DBI action as a finite Nf/Nc effect. For concreteness, we work in the Witten-Sakai-Sugimoto model, and show that this mixing must be treated in conjunction with the backreaction of the flavor branes onto the background geometry. Including the backreaction with the simplification that it is “smeared out” over the compact transverse direction, we derive a corrected effective action for the vector glueball and scalar states. Along the way, we observe a Stückelberg-like mechanism that restores translation invariance in the transverse direction. We also derive a general technique, that lends itself easily to numerics, for finding mass eigenstates of Lagrangians with vector-scalar mixing. We then calculate the first order corrections to the mass spectra of both the vector and scalar particles, and show that the term that explicitly mixes vector and scalar states is the most significant correction to the masses of low-lying scalar mesons. 
    more » « less